Modeling quasi-static crack growth with the extended finite element method Part II: Numerical applications

نویسندگان

  • R. Huang
  • N. Sukumar
چکیده

In Part I [Int. J. Solids Struct., 2003], we described the implementation of the extended finite element method (XFEM) within Dynaflowe, a standard finite element package. In our implementation, we focused on two-dimensional crack modeling in linear elasticity. For crack modeling in the X-FEM, a discontinuous function and the near-tip asymptotic functions are added to the finite element approximation using the framework of partition of unity. This permits the crack to be represented without explicitly meshing the crack surfaces and crack propagation simulations can be carried out without the need for any remeshing. In this paper, we present numerical solutions for the stress intensity factor for crack problems, and also conduct crack growth simulations with the X-FEM. Numerical examples are presented with a two-fold objective: first to show the efficacy of the X-FEM implementation in Dynaflowe; and second to demonstrate the accuracy and versatility of the method to solve challenging problems in computational failure mechanics. 2003 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation

The extended finite element method (X-FEM) is a numerical method for modeling strong (displacement) as well as weak (strain) discontinuities within a standard finite element framework. In the X-FEM, special functions are added to the finite element approximation using the framework of partition of unity. For crack modeling in isotropic linear elasticity, a discontinuous function and the two-dim...

متن کامل

A development in the finite volume method for the crack growth analysis without global remeshing

Crack growth analysis has remained one of the challenging problems in the fracture mechanics of structures. On the other hand, the fatigue crack growth is a common phenomenon in the components of structures like airplanes, navies and fluid storages where the fracture due to crack should be considered in the design of these structures. In this paper, the finite volume method (FVM) is extended fo...

متن کامل

استفاده از دستگاه مختصات متعامد محلی در مدل کردن ترک دو بعدی به روش المان محدود توسعه یافته

The extended finite element method (X-FEM) is a numerical method for modeling discontinuties, such as cracks, within the standard finite element framework. In X-FEM, special functions are added to the finite element approximation. For crack modeling in linear elasticity, appropriate functions are used for modeling discontinuties along the crack length and simulating the singularity in the crack...

متن کامل

On the Modeling of the Dynamic Crack Propagation by Extended Finite Element Method: Numerical Implementation in Dynela Code

The development of the computational techniques used in the analyzes of the dynamic fracture and their implementation in numerical codes takes a growing importance in last years. This interest derives from the necessity to predict the localisation of the initiations of cracks, when and in which direction this crack will propagate throw the material under dynamic loads. Several numerical approac...

متن کامل

Extended finite element simulation of crack propagation in cracked Brazilian disc

The cracked Brazilian disc (CBD) specimen is widely used in order to determine mode-I/II and mixed-mode fracture toughness of a rock medium. In this study, the stress intensity factor (SIF) on the crack-tip in this specimen is calculated for various geometrical crack conditions using the extended-finite element method (X-FEM). This method is based upon the finite element method (FEM). In this m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003